The Biology Curator Title: A Comparison Of Trisodium Phosphate And Decon 90 as Rehydrating Agents for Arachnida and Myriapoda Dry Specimens Author(s): Beccaloni, J. Source: Beccaloni, J. (2002). A Comparison Of Trisodium Phosphate And Decon 90 as Rehydrating Agents for Arachnida and Myriapoda Dry Specimens. *The Biology Curator, Issue 22*, 15 - 23. URL: http://www.natsca.org/article/361 NatSCA supports open access publication as part of its mission is to promote and support natural science collections. NatSCA uses the Creative Commons Attribution License (CCAL) http://creativecommons.org/licenses/by/2.5/ for all works we publish. Under CCAL authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in NatSCA publications, so long as the original authors and source are cited. ### A Comparison Of Trisodium Phosphate And Decon 90 as Rehydrating Agents for Arachnida And Myriapoda Dry Specimens Janet Beccaloni, Curator, Entomology Department, The Natural History Museum, Cromwell Road, London SW7 5BD. #### Introduction The Entomology Department at The Natural History Museum (NHM) has a large main collection of Arachnida and Myriapoda specimens stored in 80% Industrial Methylated Spirit (IMS). There is also dry, pinned material dating back to the early 19th century. Over the last few years, there has been an on-going policy to remove type specimens from the dried collection and to house them in the main spirit collection, in order to make them more accessible. Traditionally, trisodium phosphate (TSP) was used as a rehydrating agent on Arachnida and Myriapoda specimens in the Department. However, I decided to undertake an experiment to compare the effects of trisodium phosphate, with that of Decon 90 (D-90), which is used in the Zoology Department at the NHM. #### Aim To determine the most appropriate chemical out of trisodium phosphate and Decon 90, to use as a rehydrating agent in order to prepare dried Arachnida and Myriapoda material for transfer into the spirit collection. #### Methods Dried specimens (without data) of different orders were selected (i.e. Pill millipedes, millipedes, centipedes, spiders and ticks). Two dilutions (2% and 5%) of both Decon 90 and trisodium phosphate were used on 'comparable' specimens - that is, specimens from the same genus. Where there was a lack of specimens, i.e. large tarantulas, I was only able to test one strength of chemical and chose 5% because of their large size. The specimens were fully immersed in the test chemicals in tubes or small jars and the results recorded after 17 hours. The specimens were then transferred into 80% IMS, and the results recorded after 4 hours and then again after 3 years. #### Results After 17 hours in the test chemicals Decon 90 rehydrated 17 out of 20 specimens with no real side effects (see Tables 1-4). However, it did cause heavy leaching of colour in 1 specimen out of 20 rehydrated (see Tables 1 & 2), and heavy leaching of colour with bad breakdown of body contents in 2 out of 20 specimens rehydrated (see Tables 1 & 2). Trisodium phosphate rehydrated 13 out of 20 specimens with no real side effects (see Tables 1-4). However, although it caused very little leaching of colour, 6 specimens out of 20 showed breakdown of body contents, and 1 specimen out of 20 showed heavy leaching of colour with bad breakdown of body contents (see Tables 1 & 2). All specimens showed good flexibility. At the specimen level, the performances varied greatly depending on the group. Results with the Pill millipedes varied greatly between the different dilutions of both test chemicals. In Decon 90 (at both dilutions), the results were good overall, although there was some leaching. However, in trisodium phosphate there was a breakdown of body contents (see Plate 1). For the millipedes, body breakdown was also much greater in trisodium phosphate (see Table 1). In both trisodium phosphate and Decon 90, the Scolopendra centipedes (see Table 2) were noticeably more badly leached and degraded than any of the other specimens. In Decon 90, only the legs were badly affected (see Plate 2), although in trisodium phosphate the cuticle of the body segments was flaking and there were chemical deposits all over the specimens. All three varieties of spider, i.e. large tarantulas, small tarantulas (Atrax sp.) and Sparassidae spp. were generally good in both chemicals at both dilutions, although the Sparrassidae specimens were slightly leached in both dilutions of Decon 90. The ticks were good in all dilutions of both test chemicals. Plate 1 Plate 2 TABLE 1 - Millipede Results | Tube no. | Specimen | Chemical | Dilution | Results
after 17
hours in
test
chemical | Results
after 4
hours in
80% IMS | Results
after 3
years | |----------|--|----------|----------|--|---|---| | 1 | Pill millipede –
large
(Arthrosphaera sp.) | D – 90 | 2% | Slight
leaching of
colour,
otherwise
good | No further
wetting
req'd | Dried out | | 2 | Pill millipede –
large
(<i>Arthrosphaera</i> sp.) | D – 90 | 5% | Quite heavy
leaching of
colour,
otherwise
good | No further
wetting
req'd | Dried out | | 3 | Pill millipede –
large
(Zephronia sp.) | TSP | 2% | Bad
breakdown
of body
contents | Further
wetting
req'd | No further change | | 4 | Pill millipede -
large
(Zephronia sp.) | TSP | 5% | Start of
breakdown
of body
contents | No further
wetting
req'd | No further change | | 19 | Pill millipede -
small
(Arthrosphaera sp.) | D – 90 | 2% | Slight
leaching of
colour,
otherwise
good | Further
wetting
req'd | Some
breakdown
of body
contents and
fatty
droplets in
IMS | | 20 | Pill millipede -
small
(Arthrosphaera sp.) | D – 90 | 5% | Slight
leaching of
colour,
otherwise
good | Further wetting req'd | IMS slightly cloudy | | 21 | Pill millipede -
small
(<i>Arthrosphaera</i> sp.) | TSP | 2% | Slight
leaching of
colour,
otherwise
good | Further
wetting
req'd | No further change | | 22 | Pill millipede -
small
(<i>Arthrosphaera</i> sp.) | TSP | 5% | Very bad
breakdown
of body
contents | Further
wetting
req'd | Fatty
droplets in
IMS and on
specimen | # TABLE 1 - Millipede Results (continued) | Tube
no. | Specimen | Chemical | Dilution | Results after
17 hours in
test chemical | Results after
4 hours in
80% IMS | Results after 3 years | |-------------|---------------------------------------|----------|----------|---|--|--| | 16 | Millipede – large
(Spirobolus sp.) | D – 90 | 2% | Slight
leaching and
breakdown of
body contents | Further
wetting req'd | IMS cloudy | | 15 | Millipede – large
(Spirobolus sp.) | D – 90 | 5% | Very bad
leaching and
breakdown of
body contents | No further
wetting req'd | No further change | | 17 | Millipede – large
(Spirobolus sp.) | TSP | 2% | Slight
leaching and
quite bad
breakdown of
body contents | No further wetting req'd | Fatty
deposits on
specimen | | 18 | Millipede – large
(Spirobolus sp.) | TSP | 5% | Very bad
breakdown of
body contents | Further wetting req'd | IMS quite
clear, but
fatty 'tide
mark' on
specimen | | 31 | Millipede – small (Paraiulus sp.) | D – 90 | 2% | Good | No further wetting req'd | Fatty droplets
in IMS and
on specimen | | 34 | Millipede – small (Paraiulus sp.) | D – 90 | 5% | Very slight
breakdown of
body
contents,
otherwise
good | No further wetting req'd | Fatty droplets
in IMS | | 33 | Millipede – small (Paraiulus sp.) | TSP | 2% | Very bad
breakdown of
body contents | Further
wetting req'd | Fatty droplets
in IMS and
bad deposits
on specimen | | 32 | Millipede – small (Paraiulus sp.) | TSP | 5% | Good | Further
wetting req'd | Fatty droplets
in IMS and
on specimen | TABLE 2 - Centipede Results | Tube no. | Specimen | Chemical | Dilution | Results
after 17
hours in
test
chemical | Results
after 4
hours in
80% IMS | Observatio
ns after 3
years | |----------|--|----------|----------|---|---|--| | 39 | Centipede - large | D-90 | 2% | Slight
breakdown
of body
contents,
otherwise
good | No further
wetting
req'd | No further change | | 9 | Centipede – large
(Scolopendra sp.) | D – 90 | 5% | Heavy
leaching and
bad
breakdown
of legs | No further
wetting
req'd | No further change | | 40 | Centipede - large | TSP | 2% | Very slight
breakdown
of body
contents,
otherwise
good | No further
wetting
req'd | Very bad
fatty
droplets on
specimen,
IMS brown | | 10 | Centipede – large (Scolopendra sp.) | TSP | 5% | Quite heavy
leaching and
flaking
away of
cuticle on
segments | No further
wetting
req'd | Alcohol
brown due
to leaching | | 24 | Centipede – small (<i>Lithobius</i> variegatus) | D – 90 | 2% | Slight
leaching and
breakdown
of body
contents | No further
wetting
req'd | Fatty
droplets in
IMS and on
specimen | | 23 | Centipede – small (Lithobius variegatus) | D – 90 | 5% | Good | Further
wetting
req'd | IMS slightly cloudy | | 26 | Centipede – small (<i>Lithobius</i> variegatus) | TSP | 2% | Tips of legs
beginning to
breakdown | No further
wetting
req'd | Fatty
droplets in
IMS | | 25 | Centipede – small (<i>Lithobius</i> variegatus) | TSP | 5% | Slight
leaching and
breakdown
of body
contents | No further wetting req'd | Fatty
droplets in
IMS and on
specimen | # TABLE 3 - Spider Results | Tube no. | Specimen | Chemical | Dilution | Results
after 17
hours in
test
chemical | Results
after 4
hours in
80% IMS | Observations after 3 years | |----------|-------------------------------|----------|----------|---|---|----------------------------------| | 5 | Tarantula - large | D – 90 | 5% | Good | Further
wetting
req'd | No further change | | 6 | Tarantula - large | TSP | 5% | Good | Further
wetting
req'd | IMS very cloudy with precipitate | | 7 | Tarantula – small (Atrax sp.) | D – 90 | 5% | Good | Further
wetting
req'd | No further change | | 8 | Tarantula – small (Atrax sp.) | TSP | 5% | Good | Further
wetting
req'd | No further change | | 13 | Spider
(Sparassidae sp.) | D-90 | 2% | Slight
leaching –
otherwise
good | Further
wetting
req'd | No further change | | 12 | Spider
(Sparassidae sp.) | D - 90 | 5% | Leaching – otherwise good | Further
wetting
req'd | No further change | | 11 | Spider
(Sparassidae sp.) | TSP | 2% | Good | Further
wetting
req'd | No further change | | 14 | Spider
(Sparassidae sp.) | TSP | 5% | Good | Further
wetting
req'd | No further change | ## **TABLE 4 - Tick Results** | Tube no. | Specimen | Chemical | Dilution | Results
after 17
hours in
test
chemical | Results
after 4
hours in
80% IMS | Observations after 3 years | |----------|---|----------|----------|---|---|--| | 30 | Tick – large
(Amblyomma
variegatum) | D – 90 | 2% | Good | Further
wetting
req'd | IMS cloudy
with fatty
droplets | | 29 | Tick – large
(Amblyomma
variegatum) | D – 90 | 5% | Good | Further
wetting
req'd | IMS slightly cloudy | | 27 | Tick – large
(Amblyomma
variegatum) | TSP | 2% | Good | Further
wetting
req'd | IMS cloudy
with fatty
droplets | | 28 | Tick – large
(Amblyomma
variegatum) | TSP | 5% | Good | Further
wetting
req'd | IMS cloudy
with fatty
droplets | | 36 | Tick – small
(Amblyomma
variegatum) | D – 90 | 2% | Good | No further
wetting
req'd | Fatty
droplets in
IMS and on
specimen | | 38 | Tick – small (Amblyomma variegatum) | D – 90 | 5% | Good | No further wetting req'd | IMS slightly cloudy | | 37 | Tick – small
(Amblyomma
variegatum) | TSP | 2% | Good | No further
wetting
req'd | IMS cloudy
with fatty
droplets | | 35 | Tick – small
(Amblyomma
variegatum) | TSP | 5% | Good | No further wetting req'd | IMS slightly cloudy | Plate 3 #### After 4 hours in 80% IMS The specimens were studied four hours after immersion in 80% IMS, to see whether they needed further rehydration. All the spiders required further rehydrating because they still floated, along with three other specimens – a Pill millipede (tube number 3 – see Table 1), and two large millipedes (tube numbers 16 & 18 – see Table 2). All of the other specimens were sufficiently rehydrated to immerse fully in alcohol without floating. #### Results after 3 years There was clearly visible change - e.g. fatty droplets in the IMS, in 25 out of the total 40 specimens (see Tables 1-4). #### Discussion Due to the lack of availability of suitable material for experimentation, the sample size was too small to statistically analyse. However, I feel it is still possible to draw useful conclusions from those data collected. It is evident that in general, *both* chemicals are a compromise. Both chemicals affected specimens at both dilutions (2% & 5%). This therefore emphasises the need to question the motives behind rehydrating specimens in the first place. I consider body contents or structure (i.e. legs and cuticle) breakdown to be a greater problem than colour leaching, so where there is a choice of preventing either one or the other by using a particular rehydrating agent, then I would choose to prevent body breakdown. I would therefore use Decon 90 in preference to trisodium phosphate, as more specimens - 17 out of 20, were relatively unaffected, compared to 13 out of 20 (see Tables 1 – 4). However, ideally I would use a combination of the two rehydrating agents (see 'Recommendations' section below). After 17 hours in the test chemicals It is evident that the condition of the specimen has an effect on the speed of rehydration. For example, those specimens that were broken into sections (i.e. all the millipedes) showed a quicker breakdown of body contents than the Pill millipedes. This is due to their body contents being openly exposed (see Plate 3), thus allowing more of the test chemical to enter the body cavity. #### After 3 years The fact that there was change even in those rehydrated specimens that were unaffected after 4 hours in 80% IMS (i.e. small tick, tube 37 - see Table 4), infers that the rehydrating agent may still have been working. This may have been due to insufficient washing after removal from the rehydrating agent, before being placed in the IMS. #### Recommendations Where there is an option for selectively using both rehydrating agents, I would recommend the following: #### 2% Decon 90 Pill millipedes (small & large) – although slight leaching, no body breakdown Millipedes (small & large) – although slight leaching, no body breakdown Centipedes (small & large) – Decon 90 at 2% appears least damaging to the specimens overall Ticks (small & large) – good in anything, but 2% Decon 90 appears to be least damaging #### 2% Trisodium phosphate Spiders (including small & large tarantulas) – no leaching #### Further Work The above data highlight the need for further, extensive tests on a greater number of specimens, using a greater selection of rehydrating agents and different immersion times. Specimens should then be studied at the tissue structure level for any possible effects.